244 research outputs found

    The molecular basis of electroporation

    Get PDF
    BACKGROUND: Electroporation is a common method to introduce foreign molecules into cells, but its molecular basis is poorly understood. Here I investigate the mechanism of pore formation by direct molecular dynamics simulations of phospholipid bilayers of a size of 256 and of more than 2000 lipids as well as simulations of simpler interface systems with applied electric fields of different strengths. RESULTS: In a bilayer of 26 × 29 nm multiple pores form independently with sizes of up to 10 nm on a time scale of nanoseconds with an applied field of 0.5 V/nm. Pore formation is accompanied by curving of the bilayer. In smaller bilayers of ca. 6 × 6 nm, a single pore forms on a nanosecond time scale in lipid bilayers with applied fields of at least 0.4 V/nm, corresponding to transmembrane voltages of ca. 3 V. The presence of 1 M salt does not seem to change the mechanism. In an even simpler system, consisting of a 3 nm thick octane layer, pores also form, despite the fact that there are no charged headgroups and no salt in this system. In all cases pore formation begins with the formation of single-file like water defects penetrating into the bilayer or octane. CONCLUSIONS: The simulations suggest that pore formation is driven by local electric field gradients at the water/lipid interface. Water molecules move in these field gradients, which increases the probability of water defects penetrating into the bilayer interior. Such water defects cause a further increase in the local electric field, accelerating the process of pore formation. The likelihood of pore formation appears to be increased by local membrane defects involving lipid headgroups. Simulations with and without salt show little difference in the observed pore formation process. The resulting pores are hydrophilic, lined by phospholipid headgroups

    Computer simulation of partitioning of ten pentapeptides Ace-WLXLL at the cyclohexane/water and phospholipid/water interfaces

    Get PDF
    BACKGROUND: Peptide-membrane interactions play a key role in the binding, partitioning and folding of membrane proteins, the activity of antimicrobial and fusion peptides, and a number of other processes. To gain a better understanding of the thermodynamics of such interactions, White and Wimley created an interfacial hydrophobicity scale based of the transfer free energy from water to octanol or lipid bilayers of a series of synthetic peptapeptides (Ace-WLXLL, with X being any of the twenty natural amino acids) (White and Wimley (1996) Nat. Struct. Biol. 3, 842–848). In this study, we performed molecular dynamics simulations of a representative set of ten of these peptides (X = D, K, R, N, A, T, S, I, F and W) in two membrane mimetic interfaces: water-cyclohexane (10 ns) and a fully solvated dioleoylphosphatidylcholine (DOPC) bilayer (50 ns) using both constant pressure and constant area ensembles. We focus on partitioning of the ten peptides at the cyclohexane/water and lipid/water interfaces. RESULTS: The peptides rapidly equilibrate (< 2 ns) and partition at the cyclohexane/water interface. The X3 guest residue assumes average orientations that depend on the nature of the side chain. At the DOPC/water interface, dynamics is much slower and convergence is difficult to achieve on a 50 ns timescale. Nonetheless, all peptides partition to the lipid/water interface with distributions with widths of 1–2 nm. The peptides assume a broad range of side chain and backbone orientations and have only a small effect on the area of the unit cell. On average, hydrophobic guest residues partition deeper into the hydrophobic core than hydrophilic residues. In some cases the peptides penetrate sufficiently deep to somewhat affect the distribution of the C=C double bond in DOPC. The relative distribution of the X3 guest residue compared to W1 and L5 is similar in the water/cyclohexane and water/lipid simulations. Snapshots show mostly extended backbone conformations in both environments. There is little difference between simulations at a constant area of 0.66 nm(2 )and simulations at constant pressure that approximately yield the same average area of 0.66 nm(2). CONCLUSION: These peptides were designed to assume extended conformations, which is confirmed by the simulations. The distribution of the X3 side chain depends on its nature, and can be determined from molecular dynamics simulations. The time scale of peptide motion at a phospholipids-water interface is too long to directly calculate the experimentally measured hydrophobicity scale to test and improve the simulation parameters. This should be possible at the water/cyclohexane interface and likely will become feasible in the future for the phospholipids/water case

    Simulation Study of Composition Fluctuations in Lipid Bilayers

    Get PDF

    Conformational choreography of a molecular switch region in myelin basic protein—Molecular dynamics shows induced folding and secondary structure type conversion upon threonyl phosphorylation in both aqueous and membrane-associated environments

    Get PDF
    AbstractThe 18.5kDa isoform of myelin basic protein is essential to maintaining the close apposition of myelin membranes in central nervous system myelin, but its intrinsic disorder (conformational dependence on environment), a variety of post-translational modifications, and a diversity of protein ligands (e.g., actin and tubulin) all indicate it to be multifunctional. We have performed molecular dynamics simulations of a conserved central segment of 18.5kDa myelin basic protein (residues Glu80–Gly103, murine sequence numbering) in aqueous and membrane-associated environments to ascertain the stability of constituent secondary structure elements (α-helix from Glu80–Val91 and extended poly-proline type II from Thr92–Gly103) and the effects of phosphorylation of residues Thr92 and Thr95, individually and together. In aqueous solution, all four forms of the peptide bent in the middle to form a hydrophobic cluster. The phosphorylated variants were stabilized further by electrostatic interactions and formation of β-structures, in agreement with previous spectroscopic data. In simulations performed with the peptide in association with a dimyristoylphosphatidylcholine bilayer, the amphipathic α-helical segment remained stable and membrane-associated, although the degree of penetration was less in the phosphorylated variants, and the tilt of the α-helix with respect to the plane of the membrane also changed significantly with the modifications. The extended segment adjacent to this α-helix represents a putative SH3-ligand and remained exposed to the cytoplasm (and thus accessible to binding partners). The results of these simulations demonstrate how this segment of the protein can act as a molecular switch: an amphipathic α-helical segment of the protein is membrane-associated and presents a subsequent proline-rich segment to the cytoplasm for interaction with other proteins. Phosphorylation of threonyl residues alters the degree of membrane penetration of the α-helix and the accessibility of the proline-rich ligand and can stabilize a β-bend. A bend in this region of 18.5kDa myelin basic protein suggests that the N- and C-termini of the proteins can interact with different leaflets of the myelin membrane and explain how a single protein can bring them close together

    Can two wrongs make a right?:F508del-CFTR ion channel rescue by second-site mutations in its transmembrane domains

    Get PDF
    Deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is the most common cause of cystic fibrosis. The F508 residue is located on nucleotide-binding domain 1 (NBD1) in contact with the cytosolic extensions of the transmembrane helices, in particular intracellular loop 4 (ICL4). To investigate how absence of F508 at this interface impacts the CFTR protein, we carried out a mutagenesis scan of ICL4 by introducing second-site mutations at 11 positions in cis with F508del. Using an image-based fluorescence assay, we measured how each mutation affected membrane proximity and ion-channel function. The scan strongly validated the effectiveness of R1070W at rescuing F508del defects. Molecular dynamics simulations highlighted two features characterizing the ICL4/NBD1 interface of F508del/R1070W-CFTR: flexibility, with frequent transient formation of interdomain hydrogen bonds, and loosely stacked aromatic sidechains (F1068, R1070W, and F1074, mimicking F1068, F508, and F1074 in WT CFTR). F508del-CFTR displayed a distorted aromatic stack, with F1068 displaced toward the space vacated by F508, while in F508del/R1070F-CFTR, which largely retained F508del defects, R1070F could not form hydrogen bonds and the interface was less flexible. Other ICL4 second-site mutations which partially rescued F508del-CFTR included F1068M and F1074M. Methionine side chains allow hydrophobic interactions without the steric rigidity of aromatic rings, possibly conferring flexibility to accommodate the absence of F508 and retain a dynamic interface. These studies highlight how both hydrophobic interactions and conformational flexibility might be important at the ICL4/NBD1 interface, suggesting possible structural underpinnings of F508del-induced dysfunction
    corecore